Crossregulation and Functional Redundancy between the Splicing Regulator PTB and Its Paralogs nPTB and ROD1
نویسندگان
چکیده
Among the targets of the repressive splicing regulator, polypyrimidine tract binding protein (PTB) is its own pre-mRNA, where PTB-induced exon 11 skipping produces an RNA substrate for nonsense-mediated decay (NMD). To identify additional PTB-regulated alternative splicing events, we used quantitative proteomic analysis of HeLa cells after knockdown of PTB. Apart from loss of PTB, the only change was upregulation of the neuronally restricted nPTB, resulting from decreased skipping of nPTB exon 10, a splicing event that leads to NMD of nPTB mRNA. Compared with knockdown of PTB alone, simultaneous knockdown of PTB and nPTB led to larger changes in alternative splicing of known and newly identified PTB-regulated splicing events. Strikingly, the hematopoietic PTB paralog ROD1 also switched from a nonproductive splicing pathway upon PTB/nPTB knockdown. Our data indicate crossregulation between PTB and its paralogs via nonproductive alternative splicing and a large degree of functional overlap between PTB and nPTB.
منابع مشابه
Expression of Human nPTB Is Limited by Extreme Suboptimal Codon Content
BACKGROUND The frequency of synonymous codon usage varies widely between organisms. Suboptimal codon content limits expression of viral, experimental or therapeutic heterologous proteins due to limiting cognate tRNAs. Codon content is therefore often adjusted to match codon bias of the host organism. Codon content also varies between genes within individual mammalian species. However, little at...
متن کاملHuman polypyrimidine tract-binding protein interacts with mitochondrial tRNAThr in the cytosol
Human polypyrimidine tract-binding protein PTB is a multifunctional RNA-binding protein with four RNA recognition motifs (RRM1 to RRM4). PTB is a nucleocytoplasmic shuttle protein that functions as a key regulator of alternative pre-mRNA splicing in the nucleoplasm and promotes internal ribosome entry site-mediated translation initiation of viral and cellular mRNAs in the cytoplasm. Here, we de...
متن کاملA post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons.
Many metazoan gene transcripts exhibit neuron-specific splicing patterns, but the developmental control of these splicing events is poorly understood. We show that the splicing of a large group of exons is reprogrammed during neuronal development by a switch in expression between two highly similar polypyrimidine tract-binding proteins, PTB and nPTB (neural PTB). PTB is a well-studied regulator...
متن کاملSolution and crystal structures of a C-terminal fragment of the neuronal isoform of the polypyrimidine tract binding protein (nPTB)
The eukaryotic polypyrimidine tract binding protein (PTB) serves primarily as a regulator of alternative splicing of messenger RNA, but is also co-opted to other roles such as RNA localisation and translation initiation from internal ribosome entry sites. The neuronal paralogue of PTB (nPTB) is 75% identical in amino acid sequence with PTB. Although the two proteins have broadly similar RNA bin...
متن کاملRBM4 down-regulates PTB and antagonizes its activity in muscle cell–specific alternative splicing
Alternative splicing contributes largely to cell differentiation and functional specification. We previously reported that the RNA-binding protein RBM4 antagonizes the activity of splicing factor PTB to modulate muscle cell-specific exon selection of α-tropomyosin. Here we show that down-regulation of PTB and its neuronal analogue nPTB during muscle cell differentiation may involve alternative ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 27 شماره
صفحات -
تاریخ انتشار 2007